Implantation and atomic-scale investigation of self-interstitials in graphene.
نویسندگان
چکیده
Crystallographic defects play a key role in determining the properties of crystalline materials. The new class of two-dimensional materials, foremost graphene, have enabled atomically resolved studies of defects, such as vacancies,1-4 grain boundaries,(5-7) dislocations,(8,9) and foreign atom substitutions.(10-14) However, atomic resolution imaging of implanted self-interstitials has so far been reported neither in any three-dimensional nor in any two-dimensional material. Here, we deposit extra carbon into single-layer graphene at soft landing energies of ∼ 1 eV using a standard carbon coater. We identify all the self-interstitial dimer structures theoretically predicted earlier,(15-17) employing 80 kV aberration-corrected high-resolution transmission electron microscopy. We demonstrate accumulation of the interstitials into larger aggregates and dislocation dipoles, which we predict to have strong local curvature by atomistic modeling, and to be energetically favorable configurations as compared to isolated interstitial dimers. Our results contribute to the basic knowledge on crystallographic defects and lay out a pathway into engineering the properties of graphene by pushing the crystal into a state of metastable supersaturation.
منابع مشابه
Solutions of diffusion equation for point defects
An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...
متن کاملIon implantation of graphene-toward IC compatible technologies.
Doping of graphene via low energy ion implantation could open possibilities for fabrication of nanometer-scale patterned graphene-based devices as well as for graphene functionalization compatible with large-scale integrated semiconductor technology. Using advanced electron microscopy/spectroscopy methods, we show for the first time directly that graphene can be doped with B and N via ion impla...
متن کاملSynthesis and Characterization of Graphene Oxide Nanoparticles and investigation of Nanofluid Application in Machining Process
The quality of machined workpieces, particularly precious metals, is the main goal of every machining process. A suitable cutting fluid can substantially affect the machining outcome. The study is novel in that it uses nanofluids in the machining process to mitigate the adverse effects of high temperatures and friction. Graphene oxide (GO) nanoparticles were synthesized using the modified Humme...
متن کاملThe Role of Silicon Interstitials in the Formation of Boron-Oxygen Defects in Crystalline Silicon
Oxygen-rich crystalline silicon materials doped with boron are plagued by the presence of a well-known carrier-induced defect, usually triggered by illumination. Despite its importance in photovoltaic materials, the chemical make-up of the defect remains unclear. In this paper we examine whether the presence of excess silicon self-interstitials, introduced by ion-implantation, affects the forma...
متن کاملExperimental evidence for a dual vacancy–interstitial mechanism of self-diffusion in silicon
Epitaxially grown isotopically enriched Si layers have been used to study self-diffusion in Si directly at the temperatures of 1000 and 1100 °C. We obtain equilibrium diffusion coefficients in accordance with previous experiments and theoretical calculations. Comparison of diffusion data of self-, antimony, and phosphorus diffusion in Si under identical conditions of perturbed self-interstitial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2015